A technology factsheet on Volvo Cars’ powertrain technology
Model Year 2019
Powertrain technology

“Volvo Cars’ Drive-E technology is all about delivering responsive power, clean efficiency and an exceptional driving experience with the latest powertrain technology and an a clear focus on electrification. By 2025 we will have up to one million electrified Volvos on the road, with our first fully electric car coming in 2019,”

- Henrik Green, Senior Vice President Research & Development at Volvo Car Group.

At Volvo Cars, our powertrain technology is based on the concept of efficient power, without compromise. We take a modular approach to powertrain engineering so that our base engine architecture can deliver distinctive powertrain attributes and also be combined with driveline electrification on our new platform architectures, SPA and CMA.

Responsive power

Our award-winning four-cylinder engines come with advanced boosting technology that delivers responsive power when desired, through the innovative use of both turbo- and supercharging, or through the instant electric torque of our advanced plug-in hybrid **Twin Engine** powertrains.

Clean efficiency

Drive-E powertrains are designed to reduce emissions. We have improved fuel efficiency by up to 35 per cent, compared to our previous powertrain line-up, while also delivering weight savings of up to 45kg.

Our Drive-E technology delivers the performance and drivability expected by our customers.

Volvo Cars launched the world’s first diesel plug-in hybrid in 2012. In 2014 we revealed the world’s cleanest and most powerful seven-seat plug-in hybrid SUV: the XC90 T8 **Twin Engine**. This is just the beginning.

Electrification is the future

Volvo Cars is committed to electrifying its entire product line-up across its Compact Modular and Scalable Product Architectures. From 2019, all new Volvo models will be available with an electrified powertrain – from a mild hybrid 48-Volt system, through our **Twin Engine** plug-in hybrid to pure battery electric vehicles. We firmly believe that electrification and hybridization will play an increasingly significant role in the future of automotive propulsion by enabling increased driving pleasure and efficiency. Volvo Cars remains at the forefront of innovation in the field of powertrain engineering.
Modularity

One of the developmental principles and key benefits behind our award-winning Drive-E powertrains is that they were designed to reduce complexity by using a compact, modular approach.

This effectively means that both diesel and petrol models share a common architecture and can therefore be produced on the same lines in our engine plants.

The efficient design of the architecture also means that a broad range of engine power variants can be achieved with bolt-on power boosting turbo- and superchargers, coupled with bespoke engine software.
“We have made a clear commitment to electrification across the entire product range. Our Twin Engine technology delivers a no compromise balance of clean, efficient performance and exceptional driving pleasure. It is a confident step forward on the journey to increased electrification.”
- Henrik Green, Senior Vice President Research & Development at Volvo Car Group.

Twin Engine definition

Our Volvo Twin Engine technology is essentially a combination of an internal combustion engine and electric power. Electric energy from the grid can be stored in a high voltage battery. The technology is more commonly known as Plug-in Hybrid Technology (PHEV).

The Volvo technology is designed to deliver three cars experiences in one:

- **PURE** – where the car is running on electric power alone.
- **HYBRID** – where an optimal combination of the engine and electric machine propels the car in a balanced and sustainable way.
- **POWER** – where all available power is used to deliver maximum performance.

Our Twin Engine set-up means that the high voltage battery is positioned in the tunnel console for maximum safety and also improved weight distribution, for an improved driving experience.

Twin Engine technology delivers a no compromise mix of performance, driving pleasure, efficiency, interior and cargo space, and flexibility.
T6 & T8 Twin Engine technology
All-wheel drive

- Internal combustion engine
 Petrol 2.0l super turbo

- Electric A/C compressor

- Crankshaft mounted Integrated Starter Generator (C-ISG)

- Electric rear axle drive (ERAD)

- 8-speed automatic transmission

- Power electronics

- High voltage Li-ion battery

Scalable Product Architecture only
- 65kW motor
- 10.4kWh battery
- 43km range
T6 & T8 Twin Engine technology
All-wheel drive

• Propels vehicle in electric mode
• Provides electric boost torque and power during acceleration
• Provides electric all-wheel drive functionality
• Performs brake energy recuperation

Permanent magnet synchronous machine
Peak power: 65kW
Peak torque 240Nm
Weight: 34kg
Cooling: Water-cooled stator
T6 & T8 Twin Engine technology
Crank-Integrated Starter Generator

• Charges the battery
• Starter for the combustion engine
• Can support the combustion engine with electric boost power

Permanent magnet synchronous machine
Peak power: 34kW
Peak torque: boost 150Nm, cold crank = 180Nm 240Nm
Weight: 18kg
Cooling: Water-cooled
T6 & T8 Twin Engine technology
High voltage battery

The function of the high voltage battery is to store energy. It receives energy from electric grid charging and also from regenerative braking of the vehicle, or from the C-ISG.

The high voltage battery delivers power for pure electric drive and also to run the electric air conditioning for pre-climatisation of the passenger compartment.

- 96 Li-ion cells
- 270-400V
- 10.4kWh (nominal)
- Lithium manganese oxide – Nickel manganese cobalt/graphite
- Weight: 113kg (excluding coolant)
- Manual service disconnect
Twin Engine technology

Plug-in hybrids

<table>
<thead>
<tr>
<th>Powertrain</th>
<th>T8 Twin Engine AWD</th>
<th>T6 Twin Engine AWD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicles</td>
<td>XC90, S90, V90, XC60, V60, S60</td>
<td>V60, S60</td>
</tr>
<tr>
<td>Markets</td>
<td>Global *</td>
<td>Global *</td>
</tr>
<tr>
<td>Internal combustion engine</td>
<td>Petrol In-line 4-cyl super & turbocharged</td>
<td>Petrol In-line 4-cyl turbocharged</td>
</tr>
<tr>
<td>Battery</td>
<td>Li-Ion</td>
<td>Li-Ion</td>
</tr>
<tr>
<td>Electric rear motor</td>
<td>Permanent magnet synchronous machine</td>
<td>Permanent magnet synchronous machine</td>
</tr>
<tr>
<td>Transmission</td>
<td>8-speed automatic</td>
<td>8-speed automatic</td>
</tr>
<tr>
<td>Integrated Starter Generator</td>
<td>Crankmounted with El-boost</td>
<td>Crankmounted with El-boost</td>
</tr>
<tr>
<td>Charging time</td>
<td>2.5h</td>
<td>2.5h</td>
</tr>
<tr>
<td>Pre-climatisation hot & cold</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Active and passive AWD</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Volvo Cars' Twin Engine technology is being rolled out globally based on market demand and model availability. Please check with your local market representative for local offer details.
Charging your Twin Engine
Introducing the Wallbox charging station

Our new Volvo Cars Wallbox enables simple, safe and efficient charging for your Volvo Twin Engine-powered car. It reflects Volvo’s commitment to making electric propulsion an everyday reality and commitment to having over one million electrified Volvos on the road by 2025.

Simple, safe, efficient
Designed for use with Volvo plug-in hybrid Twin Engine cars, this unique and stylish charging solution was created with safety, efficiency and simplicity at its heart.

The Wallbox includes an integrated 7.5m charge cable and holder. A pulsating LED light ring illuminates when connected to the car.

Professional installation
The Volvo Wallbox is installed by certified electricians. It uses 16A (3.7kW) one-phase current in EU and two-phase in the US.

The Wallbox can be used with a variety of car brands and models, thanks to its industry standard connectors.

*Charging times vary depending upon size of battery and level of charge. Please see the powertrain specification page for model-specific charging times.
Advanced boosting
At Volvo Cars, we’ve taken advanced boosting to a new level using a modular-based charging system that offers Volvo owners a range of power levels and engine performance attributes.

Advanced boosting means that our compact engines can deliver power levels equivalent to those of larger six- and eight-cylinder units with high torque availability across a wider speed range.

We use state-of-the-art charging systems consisting of turbochargers and superchargers designed to our precise specifications to deliver improved fuel economy, leading performance and drivability.

Supercharger and turbos
Superchargers deliver low-end torque and response. Turbos deliver horsepower. The supercharger and turbo are active below 3500rpm.

Above 3500rpm, only the turbo is applied. We use a large turbo combining low backpressure and high boost pressure capacity at high revolutions for maximum power output.

When combined, the supercharger and turbocharger deliver a smooth, consistent and compelling boost to our Drive-E powertrains.
Petrol engine technology

Supercharger

Volvo Cars’ electromagnetic clutch-operated supercharger is one of the fastest and the smoothest in production. It is currently used in the T6 powertrain configuration. The supercharger delivers 6-cylinder power when you want it and 4-cylinder fuel economy when you don’t.

Volvo Cars has worked closely with Eaton to develop this unique electromagnetic clutch-based supercharger solution for our T6 Drive-E petrol engine. The electromagnetic clutch sits between the rotors and input shaft, delivering the low-end power of a 6-cylinder in our Volvo 4-cylinder Drive-E powertrains.

The intelligent algorithm created for the electronic control module (ECM), designed by our in-house powertrain engineers, takes the art of advanced boosting to the next level.

When the engine is running at cruising speed the clutch remains open, disconnecting the belt drive from the rotor mechanism. The electromagnetic clutch is activated on demand by a signal from the ECU, when the driver requests acceleration by pressing the accelerator pedal, engaging the gears and spinning the supercharger rotors.

Harnessing torque reserve from the crankshaft while adding increased airflow and momentarily retarding the advance spark, enables a quicker supercharger ramp up when the electro-magnetic clutch is engaged. Combined with a now advanced spark, the supercharger delivers a reassuringly fast response. The smooth nature of our Volvo supercharger sets it apart from the competition with a coupling time of less than 350 milliseconds.

Once the engine has reached over 3000rpm, a butterfly valve in the intake opens and the clutch disconnects the supercharger as the turbocharger, now fully spooled by exhaust gases, kicks in.

As the supercharger only operates on demand, the pulley gearing ratio has been increased to almost seven-to-one (almost twice the conventional ratio), meaning that the supercharger, at peak, rotates at almost 24,000rpm – making it one of the fastest superchargers in production.
Petrol engine technology

Advanced combustion
The combustion system designed for the petrol engines is comprised of a centrally mounted spark plug and injector with a unique spray layout that provides a homogeneous air-fuel mixture.

This central **direct injection** technique enables:

- Stratified start and an effective catalyst heating mode that outperforms Port Fuel Injection (PFI) and side mounted direct injection engines, resulting in low fuel consumption and enabling Euro6 and LEVIII emission compliance.
- Improved low-end torque compared with PFI by using scavenging and charge cooling by direct fuel injection.

The intake ports are designed to generate a high tumble motion, promoting the mixing of air and fuel during the intake stroke. In the succeeding compression stroke, this tumble motion is broken down into turbulence, accelerating the combustion speed. The combustion is therefore very stable, enabling a high degree of internal EGR, which minimises pumping losses, hence reducing the fuel consumption. Special efforts were made to achieve a combustion system that is knock resistant. The cooling water jacket, intake ports, spray target and combustion chamber geometry were fine-tuned, enabling a fuel-efficient, high compression ratio of 10.8 for the gasoline T5 and 10.3 for the gasoline T6.
Petrol engines

<table>
<thead>
<tr>
<th></th>
<th>T6</th>
<th>T5</th>
<th>T4</th>
<th>T3</th>
<th>T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>2.0l</td>
<td>2.0l</td>
<td>2.0l</td>
<td>1.5l</td>
<td>1.5l</td>
</tr>
<tr>
<td>Charging system</td>
<td>One supercharger + one turbo with waste gate</td>
<td>One turbo with waste gate</td>
</tr>
<tr>
<td>Balancer shafts</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Engine structure</td>
<td>Lightweight high-pressure die cast aluminium crank cases and bedplates with cast-in iron liners and nodular cast iron bearing reinforcements.</td>
<td>Similar pistons i.e. forged steel crank shafts to minimise bearing sizes, different machining of the piston top for different compression ratios. Friction reduced by 50%, ring tangential load reduction with Physical Vapour Deposition-coating (PVC) on the top ring and new honing specification. Piston pins are coated with Diamond-like Carbon (DLC).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crank system</td>
<td>The T6 utilises a double water jacket design to aid cooling and flow.</td>
<td>To cope with a very high heat load, ALSi7 aluminium alloy with T7 heat treatment was chosen. The T2, T3, T4 and T5 engines utilise a single water jacket design.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder head</td>
<td>Direct-acting high-speed variable valve system with service-free DLC-coated mechanical tappets. Roller bearings on first cam bearing position to reduce friction. Cam phasers on both intake and exhaust camshafts enables flexibility in the trade-off between emissions, fuel consumption and drivability.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve system</td>
<td>The oil pump is fully variable and the oil pressure is controlled by a solenoid actuator for friction reduction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil system</td>
<td>The petrol engines are equipped with a 400W electrical water pump to reduce friction losses and create the possibility to control the coolant flow for fast engine warm-up and friction reduction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling system / thermal management</td>
<td>A centrally mounted spark plug and injector with a unique spray layout that provides a very homogeneous air-fuel mixture.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combustion system</td>
<td>Volvo Car’s exhaust gas after-treatment system (three-way catalytic converter, particulate filter) shows very low pressure drop and high uniformity qualities and shares a similar base design for both petrol and diesel applications, capable of fulfilling all applicable requirements.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Petrol engines
Advanced boosting
The Volvo Cars modular approach to advanced boosting also applies to our diesel engines in the Drive-E powertrain line-up.

Consisting of a serial sequential two-stage turbo system, it is based on a refined version of the boosting technology first introduced in Volvo cars in 2008.

Once again, advanced boosting enables the delivery of increased power and drivability, with lower fuel consumption. The two-stage turbo also allows low and high-speed response.
PowerPulse

With PowerPulse, Volvo Cars has developed an innovative way of delivering instant turbo response in diesel engines, providing a distinct performance feel that many carmakers struggle to achieve in their diesel variants.

PowerPulse works by drawing air from the air filter via a compressor to a pressurised two-litre air tank.

When the driver needs to accelerate quickly during launch and during low-speed driving, the air is fed by a valve into the exhaust manifold to feed the turbo. This has the effect of delivering a quick and responsive pulse of power.

The air in the tank is topped-up automatically, making sure that PowerPulse is always ready to deliver a new boost.

We are the first carmaker using such technology in production cars.
Advanced combustion
i-Art represents the latest diesel fuel system technology.

The system rail pressure of up to 2,500bar is increased compared to previous systems of 1800 to 2000bar. Thanks to a pressure sensor and an intelligent chip in each injector, it is possible to get vast and accurate feedback, resulting in much improved control of the injected fuel quantity.

This accurate and compensating injection system delivers up to nine injections per combustion for precise combustion control. As each injector responds to real-time changes in its cylinder it means that the constantly variable injection can compensate for variations due to production and aging of the system.

This precise control of the combustion cycle means that consumption can be balanced to meet state of the art attribute levels and deliver up to two per cent improved fuel efficiency.

We were the first European carmaker to introduce i-Art Technology in its cars.
Diesel engines

<table>
<thead>
<tr>
<th></th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>2.0l</td>
<td>2.0l</td>
<td>2.0l</td>
<td>2.0l</td>
</tr>
<tr>
<td>Charging system</td>
<td>Series-sequential two-stage turbo with one VNT</td>
<td>Series-sequential two-stage turbo</td>
<td>One VNT turbo</td>
<td>One turbo with waste gate</td>
</tr>
<tr>
<td>Balancer shafts</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Engine structure</td>
<td>High-pressure die cast aluminium crank cases and bedplates with cast-in iron liners and modular cast iron bearing reinforcements.</td>
<td>Forged steel crank shafts to minimise bearing sizes. Friction reduction, 50% ring tangential load reduction with Physical Vapour Deposition-coating (PVC) on the top ring and new honing specification. Piston pins are coated with Diamond-like Carbon (DLC) and common design of the ring pack. The result is improved efficiency through friction reduction.</td>
<td>Light weight piston with a reduced compression height, longer and lighter con-rod and smaller piston pin diameter. Reduce oscillating mass by 20%.</td>
<td></td>
</tr>
<tr>
<td>Crank system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinders</td>
<td>Piston with cooled ring carrier for optimal cooling performance.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder head</td>
<td>Transverse cooling concept gives excellent and even cooling performance. To cope with a peak firing pressure of 190bar and high specific power, the coolant cores and the supporting structure for the fire deck were designed with great care. A new heat treatment was developed to improve the material strength and temperature limit. Forced air quenching is used to minimise residual material stress.</td>
<td>A classic roller finger follower valve system with hydraulic lash adjusters and steel-built camshafts for reduced weight and material hardness for the rolling contact. Positioning pins to the camshaft bearing caps assure alignment during machining and assembly, reducing friction.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling system/ thermal management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combustion system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust gas after-treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Volvo Cars’ exhaust gas after-treatment system (LNT, particle filter and selective catalytic reduction*) shows very low pressure drop and high uniformity qualities and shares a similar base design for both petrol and diesel applications, capable of fulfilling all applicable requirements.
Diesel engines

D5 rear

D4 rear

D3/D2 rear
Transmissions
Automatic

8-speed Automatic

- Best in class efficiency
- Quick and smooth shifting
- Converter technology for powerful launches
- High torque capacity combined with small size and low weight
- Start-stop technology (electric oil pump keeps transmission ready for re-start)

Our Volvo eight-speed planetary automatic transmission is a vital part of Drive-E powertrain technology. The number of gears means that the engine’s torque and power band can be utilised more efficiently.

Two of the gears are ‘overdrives’, which save fuel when cruising at constant speeds.

The lock-up system is comprised of the latest NVH damping technology (pendulum damper for diesels and super long travel damper for the petrol engine). This enables frequent use of the lock-up and allows the engine to run on low revs for the best fuel economy.

The T8 Twin Engine variant has a unique engine-braking mode. The maximum torque level is also increased to enable better use of the C-ISG for performance boosting purposes.

6-speed Automatic

- Best in class efficiency
- Quick and smooth shifting
- Converter technology for powerful launches
- Start-stop technology (electric oil pump keeps transmission ready for re-start)

Our Volvo six-speed planetary automatic transmission is a vital part of Drive-E powertrain technology for medium torque powertrains.

The six-speed transmission shares the same technology as the eight-speed transmission. The difference is the number of speeds and the adaptation for medium torque levels.
Transmissions

6-speed Manual – High Torque

- 450Nm transmission
- Lightweight ~54kg
- New optimised gear sets and final drives to provide good drivability and fuel economy

This manual gearbox is a new generation of our well proven six-speed manual gearbox. New gear sets and efficiency work have made it smoother and even more fuel efficient. Combined with the new external shifter design, the gear positions are more exacting and solid.

This gearbox will also be available in an all-wheel drive application for products based on our Scalable Product Architecture (SPA).

6-speed Manual – Medium Torque

- 330Nm transmission
- Lightweight ~42kg
- Optimised gear sets and final drives to provide good drivability and fuel economy

This is a new manual transmission developed for our medium torque applications. Excellent shifting is achieved thanks to low internal inertia and a new shifting mechanism. A huge improvement made on torque to weight ratio has been achieved with this new transmission.
All-wheel drive

The all-wheel drive variants have a very efficient type of four-wheel drive system. A compact and lightweight coupling (BorgWarner Gen. 5) distributes the engine’s power between the front and rear wheels. Under normal dry conditions practically all of the power is distributed to the front wheels. The system constantly calculates the need for torque to the rear wheels and can instantly redistribute up to 50 per cent of the engine’s torque to the rear wheels. When at a standstill, full all-wheel drive is always engaged to prepare for maximum traction during acceleration.